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Electrohydrodynamic stability of a liquid jet 

ABOU EL MAGD A. MOHAMEDig and N. K. NAYYARZ 
t Faculty of Mathematics, University of Delhi 
$ Department of Physics and Astrophysics, University of Delhi 
M S .  receiaed 21st July 1969 

Abstract. The stability of a liquid jet under a time-dependent electric field has 
been investigated. It is found that, for perturbations having large wavelengths, 
the electric field has a stabilizing effect. For perturbations having small waye- 
lengths, there are resonance modes causing excitation of the perturbed surface 
of the jet. 

1. Introduction 
The problem of stability of a liquid jet under the influence of an electric field has 

been investigated by many authors in recent years. Glonti (1958) and Nayyar and 
Murty (1960) have studied the effect of an axial electrostatic field on the stability of a 
dielectric liquid jet and found that the electric field has a stabilizing effect. Reynolds 
(1965), Crowley (1965) and Melcher (1963) have investigated the stability of a jet 
under a radial time-varying electric field, and found that under certain conditions the 
field may have a stabilizing or destabilizing effect. We shall discuss here the effect of a 
time-varying axial field on the stability of a jet. It is well known that in the absence 
of an electric field the critical stable length A, of a cylindrical liquid jet is ZnR, where 
R is the radius of the jet. Nayyar and Murty (1960) have shown that the critical length 
of the jet increases in the presence of an axial electric field. For a given value of the 
applied electric field the jet is stable for all modes of perturbation with wave numbers 
x (in units of the radius of the jet) exceeding a certain critical value x,. In  the present 
case the time-dependent axial field will cause some modification to this criteria, 
namely for small values of x less than one, the stability argument essentially remains 
unaffected while, for large values of x greater than one, the jet will not always be 
stable as before but there will be bounded regions of stability. 

2. Outline of the procedure 
We shall consider an infinite dielectric liquid cylinder of radius R with density and 

dielectric constant pi and ei respectively. The  cylinder is surrounded by another 
dielectric medium having density and dielectric constant pa and eo respectively 
(henceforth the subscripts or superscripts i, o will refer to inner or outer fluid respect- 
ively). The  cylinder is subject to a time-varying axial electric field of the type 

E = E*Re{exp(iwt))l, (2.1) 
where 1, is the unit vector in the x direction, which is taken as the axis of the cylinder 
(using cylindrical polar coordinates). 

If we allow a small departure from the equilibrium state, the linearized equation 
of motion takes the form 

EV 

Et 
p - =  -vrI 
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where 

r I = ~ - p  - E . 6 E  i3, - 
and p ,  6E and ZI are, respectively, the perturbations in pressure, electric field and the 
velocity of the jet. The second term in the right-hand side of equation (2.3) is due to 
electrostriction. We shall assume that the jet and the surrounding medium are 
incompressible fluids, so that the equation of continuity is 

v * v  = 0. (2.4) 
From equations (2.2) and (2.4) we get 

V2IT = 0. (2.5) 

We shall make use of the quasi-static approximation, i.e. the effect of displacement 
currents will be neglected. The  perturbed potential will therefore satisfy Laplace’s 
equation 

where 
v26+ = 0 (2.6) 

SE = - 0 8 4 .  (2.7) 

2 = R+y( t )  exp{i(kx+mp)) (2.8) 

The  surface deformation is assumed to be of the form 

where y ( t )  is a small function of time to be solved. 
The  solutions for equations (2.5) and (2.6) can be put in the following forms 

(2.10) 

where 

where I, and K, are the modified Bessel functions of pure imaginary arguments of 
order m of the first and second kind respectively. B,, B,, AI and A2 are time-depend- 
ent constants of integration which are to be evaluated by making use of the following 
appropriate boundary conditions : 

(i) The  normal component of the velocity at the interface should be compatible 
with the assumed surface deformation defined by equation (2.8). 

(ii) The  potential 64 should be continuous at the interface. 
(iii) The  normal component of the electric displacement should be continuous at 

q N .  Ei = c o N .  Eo (2.13) 

where E’>O is the total electric field and N is the unit normal vector to the interface, 
pointing outwards. 

the interface, namely, 

A 7  
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(iv) The normal component of the momentum tensor should be continuous at the 
interface, namely, 

- a” $= jEi((E’)2 - @) 

- -3E0{(E0)2  - P) 
(2.14) YT 

R2 
+ - (x2 + m2 - 1) exp(i(kx + mp)} 

where T i s  the surface tension. 
Applying condition (i) to (2.9) and (2.10) we get 

(2.15) 

where 
d2Y y” = -. 
dt 

Conditions (ii) and (iii) when applied to equations (2.10) and (2.11) yield 

(2.16) 

Substituting from equations (2.15), (2.16) and (2.9)-(2.12) into equation (2.14) and 
simplifying we obtain 

(2.17) 
3. Analysis of stability 

The solution of equation (2.17) will decide the criterion of stability of the jet. 
Accordingly, the jet will be stable if the solution for y(t) will remain bounded as 
t + CO, otherwise it is unstable. Let us use the following notations for simplicity 

d2y PiImKm’-~oIm’Km ( E ~ - E ~ ) ~ K ~ I ~  cos2wt 
-( dt2 Im’Km’ R2 E i .  KmIm’-~oKm’Im 

TX (x2 + m2 - l)Im’Km’ 
b = -  (3 w2R3 plImKm’ -poIm’Km 

%ZE”2 (.i-Eo)2KmKm’ImIm’ 
w2R2 ( ~ ~ K m I m ’ - ~ o K m ’ I m ) ( p ~ K m ’ I m - ~ o K ~ ’ ~ ~ ’ )  (3.2) h2= _ _ _  

From (3.1), (3.2) and (2.17) we obtain 

where 

d2Y 
dq2 
__ + ( b  - h2  COS'^)^ = 0 (3.3) 

q = w t .  

Equation (3.3) is the Mathieu differential equation, which can be put in the equivalent 
form 

d2Y 
dv2 
-- +(a-Zp  cos 2q)y = 0 (3.4) 
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where 

Km’Im’ - 
T x  xE*’ ImKm(Ei-Eo)2 

2w2R2 pIKm‘Im-poKmIm’ (3.5) 
(x2+m’-l)+ - 

and 
x2E*2  Km’KmImIm’(~l - E , ) ~  q =  -- 

4w2R2 (eiKmIm’ -~oKm’Im)(piKm’Im-poKmIm’j 
The  condition for stability reduces to the problem of the bounded regions of the 

Mathieu functions which (McLachlan 1947) gives the condition of stability as 

1 A( 0) s in2&n ali2 I 6 1 (3.7) 
where A(0) is the Hill’s determinant. 

equation (2.17) reduces to 
As a limiting case when w - t O  we obtain the solution for the static case and 

which is a linear differential equation with constant coefficients and can be satisfied 
by y = exp(crt) where 

Im‘Km‘ T x  x2E*2 (Ei-Eo)’KmIm 
-- -(x’+mZ-l)+ - - 0 2  = - 

piKm’Im -poKmIm’ (R3 R2 €iKmIm’ - E,K,’I, 

So stability occurs if 
T x  x’E*’(E~ - E , ) ’ K ~ I ~  
R E~K~I~’ -G ,K, ’ I ,  
- (xz  + m2 - 1) + > 0. 

For axisymmetric perturbation ( m  = 0), inequality (3.10) becomes 

xE*’(E~ - E , ) ~ K ~ I ~  
- 2 0  

T 
- (x2 - 1) + 
R EiKOIl +EOKlIO 

(3.10) 

(3.11) 

which is the same as that obtained earlier by Nayyar and Murty (1960). 
In general the analysis of inequality (3.7) is rather complicated due to the infinite 

Hill‘s determinant. An approximate formula for stability given by Morse and 
Feshbach (1953) may be used for small values of lh21 or q which is a good approxima- 
tion to high-frequency fields. According to this assumption the jet will be stable if 

h4 - 16(1.-b)h2 +32b(l- b)  2 0. (3.12) 

The  above inequality is a quadratic expression and can be investigated using 
elementary theory of equations. If we write 

A = + {32( 1 - b)(2 - 3b)\,”’\ 

and 
(3.13) 

the analysis can be classified in two categories: 
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(i) For those modes for which b > 0 (which means that x2+m2 2 1) the analysis 

(I) For 0 < b < 1, the jet will be stable for all modes. 
(11) For b > 1, the jet will be stable if 

can be summarized as follows: 

E*2 R2 
-2 -  {S(b-l>+A}. 
0 2  x2p%* 

(3.14) 

It is clear that this result is different from the case for electrostatic fields applied 
to the jet, since the latter case admits stability for all modes for which x2 + m2 2 1 
(i.e. b 2 0). If we define the crical amplitude E,* of the applied electric field as 

(3.14a) 

then from inequality (3.14) we find that for x 1, the system is always stable for 
E*2 2 and unstable for E*2 < E,*2. For the given parameters of the jet listed 
in table 1 and for the frequency of the applied field, w = 120n Hz, we find that the 
jet is always stable for x < x,( N 27). The dependence of E,* on x (x > x,) is given in 
table 1 for axisymmetric modes ( m  = 0). 

Table 1 

x Eo * 
(V cm-l) 

27 5205.90 
28 7493.70 
29 9004.60 
30 10192.09 
31 11186.76 
32 12049.34 
33 12814.37 
34 13503.88 
35 14132.98 
36 14712.57 
37 15250.84 

Parameters ofjet: E, = 81, co = 1, R = 2 cm, 
po = 0, T = 74 dyn cm-l, 

m = O .  
p ,  = 1 g C M - ~ ,  

For the typical values 800 Hz and 900 Hz of w we find that the values of x, are 

In  our case, if E* does not satisfy inequality (3.14) for b > 1, the jet will be un- 

(ii) If b < 0, according to inequality (3.12), stability can occur only when 

approximately 42 and 47 respectively. 

stable and the time-varying field has a destabilizing effect. 

E*2 R 
-2- {8(b - 1) +A}.  
0 2  x%*p* 

(3.15) 

Except for the frequency dependence, this condition is similar to that in the electro- 
static case. We can similarly define the critical amplitude E,* (equation (3.14~)) such 
that for a given value of x (x < l), the jet is stable for E* 2 E,*, and unstable for 
E* < E,". In  table 2 we have given the values of E,* for various values of w and x. 
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Table 2 

EQBtatfQ E," 
(V cm- l) (V cm-l) 

200 120n  600 800 950 
\ 

x\w(Hz) 0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

724.32 
581.78 
531.47 
494.99 
458.50 
41 7.09 
367.39 
304.83 
218.76 

0 

1267.33 
870.90 
766.92 
711.70 
653.34 
592.64 
524971 
433.59 
312.16 

0 

1520.88 
932.14 
795.92 
711-74 
667.1 5 
612.59 
539.63 
454.86 
320.85 

0 

2032.25 
1174.32 
856.13 
788.86 
728.57 
641.28 
546.44 
443.02 
341095 

0 

2841.93 
1212.83 
957.57 
833.46 
758.82 
692.90 
583.68 
458086 
375.16 

0 

3374.79 
1314.75 
1166.66 
808.1 1 
780.37 
656.38 
625.33 
552.63 
385.78 

0 

The jet dimensions are the same as given in table 1. 

From table 2 we see that for a given x < 1 the values of E,* increase with increas- 
ing U ,  and, further, for any value of x < 1, E,*( U )  > EZtatic, although the dependence 
of E," on x is similar to that of the corresponding electrostatic case. One can justify 
this similarity if one studies the characteristic curve of the Mathieu functions in the 

Figure 1. The characteristic curves of the Mathieu function for the first region 
of instability in the (a,q) plane. Shaded regions are regions of stability. 

(a,q) plane (figure 1). Concentrating on the first region of stability (0 < a < l), and 
for small values of q, we obtain for a > 0 the inequality 

2T 
E*2+XRrYC(x2+m"l) > 0. (3.16) 

This may be considered as an approximation to inequality (3.15), and it is similar 

If we let 
to the electrostatic condition. The  field in this case has a stabilizing effect. 

f (h2 ,  b)  E h4-16h2(1-b)+32b(1-b) (3.17) 
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the stability condition given by inequality (3.12) will be 

f(h2, b)  2 0. (3.18) 

The curvef(h2, 6) = 0 in the (6, h2) plane represents a hyperbola which touches the 
lines 6 = 8 and 6 = 1 and intersects the 6 axis at the origin and 6 =: 1 (figure 2). Since 

-131 Stab i l i t y  In stabi I ity 

-251 -29  

Stability I \  
Figure 2. Approximate regions of stability defined by the hyperbola represented 

by the equationsf(h2, b) = 0. The regions appear in the lower half-plane. 

Figure 3 .  The different regions of stability and instability of the characteristic 
curves of the Mathieu functions. 

h2 is always negative in equation (3.2), we shall be interested in the lower half-plane 
only (the regions of stability and instability are shown in figure 2). This figure may 
be considered as the approximated first region of instability of the graph of the 
characteristic curves of the Mathieu functions (figure 3). 
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4. Resonance modes 
If me examine generally the characteristic curves of the Mathieu functions 

(figure 3) we see that the regions of instability get narrower as we move towards the 
a axis until they tend to points on the a axis at values of a equal to n2 where n = 1,2,3 .. . . 

In  these narrow regions, the electric field gives energy to the disturbed fluid, the 
amplitude of the disturbance grows exponentially and a state of resonance is reached. 
14s the yalue of q decreases, the resonance becomes sharper and the points of sharp 
resonance are given by 

n = 1 , 2 , 3 ,  ... . (4.1) i Tx x2E*2E" 

2w2R2 
(x2+m2--l)+ ~ = n2, 

For a gken n, the roots of equation (4.1) give the resonance wave numbers in terms 

The resonance occurs when the frequency of the applied field satisfies the relation 
of E*, w and the various parameters of the jet. 

where 
o' = nw, n =  1 , 2 , 3  ,.... 

Equation (4.3) is similar to the dispersion relation for a jet in the presence of a 
uniform electrostatic field of strength E* and subject to a perturbation of the form 
exp{i( o't + kx + mp)}. 
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